Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.

Identifieur interne : 001C17 ( Main/Exploration ); précédent : 001C16; suivant : 001C18

One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.

Auteurs : Sandra Irmisch [Allemagne] ; Andrea T. Müller [Allemagne] ; Lydia Schmidt [Allemagne] ; Jan Günther [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Tobias G. Köllner [Allemagne]

Source :

RBID : pubmed:26511849

Descripteurs français

English descriptors

Abstract

BACKGROUND

Labdane-related diterpenoids form the largest group among the diterpenes. They fulfill important functions in primary metabolism as essential plant growth hormones and are known to function in secondary metabolism as, for example, phytoalexins. The biosynthesis of labdane-related diterpenes is mediated by the action of class II and class I diterpene synthases. Although terpene synthases have been well investigated in poplar, little is known about diterpene formation in this woody perennial plant species.

RESULTS

The recently sequenced genome of Populus trichocarpa possesses two putative copalyl diphosphate synthase genes (CPS, class II) and two putative kaurene synthase genes (KS, class I), which most likely arose through a genome duplication and a recent tandem gene duplication, respectively. We showed that the CPS-like gene PtTPS17 encodes an ent-copalyl diphosphate synthase (ent-CPS), while the protein encoded by the putative CPS gene PtTPS18 showed no enzymatic activity. The putative kaurene synthases PtTPS19 and PtTPS20 both accepted ent-copalyl diphosphate (ent-CPP) as substrate. However, despite their high sequence similarity, they produced different diterpene products. While PtTPS19 formed exclusively ent-kaurene, PtTPS20 generated mainly the diterpene alcohol, 16α-hydroxy-ent-kaurane. Using homology-based structure modeling and site-directed mutagenesis, we demonstrated that one amino acid residue determines the different product specificity of PtTPS19 and PtTPS20. A reciprocal exchange of methionine 607 and threonine 607 in the active sites of PtTPS19 and PtTPS20, respectively, led to a complete interconversion of the enzyme product profiles. Gene expression analysis revealed that the diterpene synthase genes characterized showed organ-specific expression with the highest abundance of PtTPS17 and PtTPS20 transcripts in poplar roots.

CONCLUSIONS

The poplar diterpene synthases PtTPS17, PtTPS19, and PtTPS20 contribute to the production of ent-kaurene and 16α-hydroxy-ent-kaurane in poplar. While ent-kaurene most likely serves as the universal precursor for gibberellins, the function of 16α-hydroxy-ent-kaurane in poplar is not known yet. However, the high expression levels of PtTPS20 and PtTPS17 in poplar roots may indicate an important function of 16α-hydroxy-ent-kaurane in secondary metabolism in this plant organ.


DOI: 10.1186/s12870-015-0647-6
PubMed: 26511849
PubMed Central: PMC4625925


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.</title>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. sirmisch@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muller, Andrea T" sort="Muller, Andrea T" uniqKey="Muller A" first="Andrea T" last="Müller">Andrea T. Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. amueller@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Lydia" sort="Schmidt, Lydia" uniqKey="Schmidt L" first="Lydia" last="Schmidt">Lydia Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. lschmidt@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. jguenther@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. gershenzon@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. koellner@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26511849</idno>
<idno type="pmid">26511849</idno>
<idno type="doi">10.1186/s12870-015-0647-6</idno>
<idno type="pmc">PMC4625925</idno>
<idno type="wicri:Area/Main/Corpus">001A55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A55</idno>
<idno type="wicri:Area/Main/Curation">001A55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A55</idno>
<idno type="wicri:Area/Main/Exploration">001A55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.</title>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. sirmisch@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muller, Andrea T" sort="Muller, Andrea T" uniqKey="Muller A" first="Andrea T" last="Müller">Andrea T. Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. amueller@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Lydia" sort="Schmidt, Lydia" uniqKey="Schmidt L" first="Lydia" last="Schmidt">Lydia Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. lschmidt@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. jguenther@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. gershenzon@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. koellner@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (chemistry)</term>
<term>Alkyl and Aryl Transferases (genetics)</term>
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acids (metabolism)</term>
<term>Diterpenes, Kaurane (metabolism)</term>
<term>Gas Chromatography-Mass Spectrometry (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Magnesium (pharmacology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (drug effects)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acides aminés (métabolisme)</term>
<term>Alkyl et aryl transferases (composition chimique)</term>
<term>Alkyl et aryl transferases (génétique)</term>
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Chromatographie gazeuse-spectrométrie de masse (MeSH)</term>
<term>Diterpènes de type kaurane (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Magnésium (pharmacologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité du substrat (effets des médicaments et des substances chimiques)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Amino Acids</term>
<term>Diterpenes, Kaurane</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alkyl et aryl transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Populus</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité du substrat</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Alkyl et aryl transferases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acides aminés</term>
<term>Alkyl et aryl transferases</term>
<term>Diterpènes de type kaurane</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Magnésium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Magnesium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gas Chromatography-Mass Spectrometry</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie gazeuse-spectrométrie de masse</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Phylogenèse</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Labdane-related diterpenoids form the largest group among the diterpenes. They fulfill important functions in primary metabolism as essential plant growth hormones and are known to function in secondary metabolism as, for example, phytoalexins. The biosynthesis of labdane-related diterpenes is mediated by the action of class II and class I diterpene synthases. Although terpene synthases have been well investigated in poplar, little is known about diterpene formation in this woody perennial plant species.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The recently sequenced genome of Populus trichocarpa possesses two putative copalyl diphosphate synthase genes (CPS, class II) and two putative kaurene synthase genes (KS, class I), which most likely arose through a genome duplication and a recent tandem gene duplication, respectively. We showed that the CPS-like gene PtTPS17 encodes an ent-copalyl diphosphate synthase (ent-CPS), while the protein encoded by the putative CPS gene PtTPS18 showed no enzymatic activity. The putative kaurene synthases PtTPS19 and PtTPS20 both accepted ent-copalyl diphosphate (ent-CPP) as substrate. However, despite their high sequence similarity, they produced different diterpene products. While PtTPS19 formed exclusively ent-kaurene, PtTPS20 generated mainly the diterpene alcohol, 16α-hydroxy-ent-kaurane. Using homology-based structure modeling and site-directed mutagenesis, we demonstrated that one amino acid residue determines the different product specificity of PtTPS19 and PtTPS20. A reciprocal exchange of methionine 607 and threonine 607 in the active sites of PtTPS19 and PtTPS20, respectively, led to a complete interconversion of the enzyme product profiles. Gene expression analysis revealed that the diterpene synthase genes characterized showed organ-specific expression with the highest abundance of PtTPS17 and PtTPS20 transcripts in poplar roots.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The poplar diterpene synthases PtTPS17, PtTPS19, and PtTPS20 contribute to the production of ent-kaurene and 16α-hydroxy-ent-kaurane in poplar. While ent-kaurene most likely serves as the universal precursor for gibberellins, the function of 16α-hydroxy-ent-kaurane in poplar is not known yet. However, the high expression levels of PtTPS20 and PtTPS17 in poplar roots may indicate an important function of 16α-hydroxy-ent-kaurane in secondary metabolism in this plant organ.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26511849</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>262</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-015-0647-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Labdane-related diterpenoids form the largest group among the diterpenes. They fulfill important functions in primary metabolism as essential plant growth hormones and are known to function in secondary metabolism as, for example, phytoalexins. The biosynthesis of labdane-related diterpenes is mediated by the action of class II and class I diterpene synthases. Although terpene synthases have been well investigated in poplar, little is known about diterpene formation in this woody perennial plant species.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The recently sequenced genome of Populus trichocarpa possesses two putative copalyl diphosphate synthase genes (CPS, class II) and two putative kaurene synthase genes (KS, class I), which most likely arose through a genome duplication and a recent tandem gene duplication, respectively. We showed that the CPS-like gene PtTPS17 encodes an ent-copalyl diphosphate synthase (ent-CPS), while the protein encoded by the putative CPS gene PtTPS18 showed no enzymatic activity. The putative kaurene synthases PtTPS19 and PtTPS20 both accepted ent-copalyl diphosphate (ent-CPP) as substrate. However, despite their high sequence similarity, they produced different diterpene products. While PtTPS19 formed exclusively ent-kaurene, PtTPS20 generated mainly the diterpene alcohol, 16α-hydroxy-ent-kaurane. Using homology-based structure modeling and site-directed mutagenesis, we demonstrated that one amino acid residue determines the different product specificity of PtTPS19 and PtTPS20. A reciprocal exchange of methionine 607 and threonine 607 in the active sites of PtTPS19 and PtTPS20, respectively, led to a complete interconversion of the enzyme product profiles. Gene expression analysis revealed that the diterpene synthase genes characterized showed organ-specific expression with the highest abundance of PtTPS17 and PtTPS20 transcripts in poplar roots.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The poplar diterpene synthases PtTPS17, PtTPS19, and PtTPS20 contribute to the production of ent-kaurene and 16α-hydroxy-ent-kaurane in poplar. While ent-kaurene most likely serves as the universal precursor for gibberellins, the function of 16α-hydroxy-ent-kaurane in poplar is not known yet. However, the high expression levels of PtTPS20 and PtTPS17 in poplar roots may indicate an important function of 16α-hydroxy-ent-kaurane in secondary metabolism in this plant organ.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Irmisch</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. sirmisch@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Andrea T</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. amueller@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Lydia</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. lschmidt@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Günther</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. jguenther@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. gershenzon@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Köllner</LastName>
<ForeName>Tobias G</ForeName>
<Initials>TG</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. koellner@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045786">Diterpenes, Kaurane</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.-</RegistryNumber>
<NameOfSubstance UI="C108877">terpene synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I38ZP9992A</RegistryNumber>
<NameOfSubstance UI="D008274">Magnesium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045786" MajorTopicYN="N">Diterpenes, Kaurane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008401" MajorTopicYN="N">Gas Chromatography-Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008274" MajorTopicYN="N">Magnesium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26511849</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-015-0647-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-015-0647-6</ArticleId>
<ArticleId IdType="pmc">PMC4625925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):212-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Mar;25(3):1108-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23512856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2012 Jan 27;51(5):1124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22105807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1647-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21497866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4126-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4737-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2007 May 25;8(8):869-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17457817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2010 Nov;27(11):1521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20890488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Nov;67(21):2307-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 2;285(27):20558-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Jul;12(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9263448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1994-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):1003-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Oct;6(10):1509-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7994182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jan;278(1):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21122070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2002 Aug;267(6):730-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12207221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2012 Feb;74:30-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22177479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Nov;67(22):2415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16996548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1980 Nov;58(6):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7397-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17456599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Feb;70(3):366-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1642-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2008 May;72(5):1168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18460786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 17;286(24):21145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25303804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:259-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Nov 13;580(26):6175-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Apr 23;130(16):5400-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2010 Aug 15;78(11):2417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20602361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1115-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22682202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(9):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Feb;68(3):312-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2004 May;22(10):780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<name sortKey="Muller, Andrea T" sort="Muller, Andrea T" uniqKey="Muller A" first="Andrea T" last="Müller">Andrea T. Müller</name>
<name sortKey="Schmidt, Lydia" sort="Schmidt, Lydia" uniqKey="Schmidt L" first="Lydia" last="Schmidt">Lydia Schmidt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26511849
   |texte=   One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26511849" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020